Analog Electronics ENEE236

Instructor: Nasser Ismail

L8- DC Biasing - BJTs

Example

- Assume V_{CE} (sat) $=0.2 \mathrm{~V}$
- Find mode of operation of Q1?

Determine Mode of Operation of BJT?

- Solution:
- 1) Since BE junction is forward biased ==> Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in Active Mode

$$
\begin{aligned}
& 5=200 \mathrm{k} \Omega \cdot \mathrm{I}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}}+2 \mathrm{k} \Omega \cdot \mathrm{I}_{\mathrm{E}} \\
& \text { But, } \\
& \text { Solve for } \mathrm{I}_{\mathrm{B}}=\frac{5(1+\beta) \mathrm{I}_{\mathrm{B}}}{200 \mathrm{k} \Omega+(1+\beta) .2 \mathrm{k} \Omega} \\
& \mathrm{I}_{\mathrm{B}}=\frac{5-\mathrm{V}_{\mathrm{BE}}}{200 \mathrm{k} \Omega+(1+100) .2 \mathrm{k} \Omega} \\
& =\frac{4.3 \mathrm{~V}}{402 \mathrm{k} \Omega}=10.7 \mu \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}} \\
& =(100) \cdot(10.7 \mu \mathrm{~A}) \\
& =1.07 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{E}}=(\beta+1) \mathrm{I}_{\mathrm{B}} \\
& =1.0807 \mathrm{~mA}
\end{aligned}
$$

Now we find $V_{C E}$ from output circuit

$$
\begin{aligned}
& 10-\mathrm{I}_{\mathrm{C}} .3 \mathrm{k} \Omega-\mathrm{I}_{\mathrm{E}} .2 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{CE}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{CE}}=4.63 \mathrm{~V}>\mathrm{V}_{\mathrm{CE}(\text { sat })}
\end{aligned}
$$

$\therefore \mathrm{Q} 1$ is in active mode and the assumption is true we can also verify that the BC junction is reverse biassed which is required so that the BJT operates in active mode

$$
\begin{aligned}
& 10-\mathrm{I}_{\mathrm{C}} \cdot 3 \mathrm{k} \Omega-\mathrm{I}_{\mathrm{E}} \cdot 2 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{CE}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CB}}-\mathrm{V}_{\mathrm{EB}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{CB}}=\mathrm{V}_{\mathrm{CE}}-\mathrm{V}_{\mathrm{BE}}=4.63-0.7=3.93 \mathrm{~V} \\
& \therefore \mathrm{~V}_{\mathrm{BC}}=-\mathrm{V}_{\mathrm{CB}}=-3.33 \mathrm{~V}
\end{aligned}
$$

$B C$ junction is reverse biased

- Solution:
- 1) Since BE junction is forward biased $==>$ Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in saturation mode: $10-\mathrm{I}_{\mathrm{C}(\text { sat })} \cdot 3 \mathrm{k} \Omega-\mathrm{I}_{\mathrm{E}(\text { sat })} \cdot 2 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{CE}(\text { Sat })}$ assume $I_{E(\text { sat })}=I_{C(s a t)}$ $\therefore \mathrm{I}_{\mathrm{C}(\mathrm{sal})}=\frac{10-0.2}{5 \mathrm{k} \Omega}=1.96 \mathrm{~mA}$
$I_{B(\text { min })}=\frac{I_{C(\text { sat })}}{\beta}=19.6 \mu \mathrm{~A}$
Now we find the actual value of IB
$\mathrm{I}_{\mathrm{B} \text { (actual) }}=10.7 \mu \mathrm{~A}$ (it was found previously)
since
$\mathrm{I}_{\mathrm{B} \text { (actual) }}<\mathrm{I}_{\mathrm{B}(\text { sat })} \Rightarrow$ the assumption made earlier $\quad \mathrm{I}_{\mathrm{B}(\text { min })}$ that BJT in saturation mode is wrong, and actually it is in active mode

Biasing

Biasing: Applying DC voltages to a transistor in order to establish fixed level of voltage and current, for Amplifier mode, the resulting dc voltage and current establish the operation point to turn it on so that it can amplify AC signals.

Operating Point

The DC input establishes an operating or quiescent point called the Q-point.

The Three Operating Regions

Active or Linear Region Operation

- Base-Emitter junction is forward biased
- Base-Collector junction is reverse biased

Cutoff Region Operation

- Base-Emitter junction is reverse biased

Saturation Region Operation

- Base-Emitter junction is forward biased
- Base-Collector junction is forward biased

DC Biasing Circuits

Fixed-bias circuit
Emitter-stabilized bias circuit
Collector-emitter loop
Voltage divider bias circuit
DC bias with voltage feedback

1)Fixed Bias Configuration

DC equivalent circuit
$\mathrm{f}=0 \Rightarrow \mathrm{Xc}=\frac{1}{2 \pi f C} \cong \infty($ open circuit $)$

The Base-Emitter Loop

From Kirchhoff's voltage law for Input:

$$
+V_{C C}-I_{B} R_{B}-V_{B E}=0
$$

Solving for base current:

$$
I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}
$$

Choosing Rb will establish the required level of ls

Collector-Emitter Loop

Collector current:

$$
I_{C}=\beta I_{B}
$$

From Kirchhoff's voltage law:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \\
& \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}} \\
& \text { Since } \mathrm{V}_{\mathrm{E}}=0 \\
& \therefore \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}} \\
& \text { Also } \\
& \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{B}}- \\
& \therefore \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{B}}
\end{aligned}
$$

Saturation

When the transistor is operating in saturation, current through the transistor is at its maximum possible value.

$$
'_{\text {Csat }}=\frac{V_{C C}}{R_{C}}
$$

$$
V_{C E} \cong 0 \mathrm{~V}
$$

Ch. 4 Summary

Load Line Analysis

The load line end points are:
$I_{\text {Csat }}$

$$
\begin{aligned}
& I_{C}=V_{C C} / R_{C} \\
& V_{C E}=0 \mathrm{~V}
\end{aligned}
$$

$\mathrm{V}_{\text {CEcutoff }}$

$$
\begin{aligned}
& V_{C E}=V_{C C} \\
& I_{C}=0 \mathrm{~mA}
\end{aligned}
$$

The Q-point is the operating point where the value of R_{B} sets the value of I_{B} that controls the values of $V_{C E}$ and I_{C}

Ch. 4 Summary

The Effect of $V_{c c}$ on the Q-Point

Ch. 4 Summary

The Effect of \boldsymbol{R}_{C} on the Q-Point

The Effect of I_{B} on the Q-Point

Design: Fixed bias

Assume $\mathrm{VCC}=10 \mathrm{~V}, \beta_{\text {nominal }}=100, \beta_{\text {min }}=50, \beta_{\text {max }}=150$
Design for Q - point : $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$

Solution

$$
\begin{aligned}
I_{B Q} & =\frac{I_{C Q}}{\beta_{\text {nominal }}}=\frac{1 \mathrm{~mA}}{100}=10 \mu \mathrm{~A} \\
\mathrm{I}_{\mathrm{B}} & =\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}} \Rightarrow \\
\mathrm{R}_{\mathrm{B}} & =\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{B}}}=\frac{10-0.7}{10 \mu \mathrm{~A}} \\
& =930 \mathrm{k} \Omega
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}
$$

$$
\mathrm{V}_{\text {CEQ }}=5=10-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}
$$

$$
\therefore \mathrm{R}_{\mathrm{C}}=\frac{5}{1 \mathrm{~mA}}=5 \mathrm{k} \Omega
$$

Fixed bias Stability

Assume VCC $=10 \mathrm{~V}, \beta_{\text {nominal }}=100, \beta_{\text {min }}=50, \beta_{\text {max }}=$ Design for Q - point : $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$

Solution

$$
\begin{aligned}
& \text { If } \beta=\beta_{\min }=50 \\
& \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=(50)(10 \mu \mathrm{~A})=0.5 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \\
& \mathrm{~V}_{\mathrm{CEQ}}=10-(0.5 \mathrm{~mA})(5 \mathrm{k} \Omega)=7.5 \mathrm{~V} \\
& \text { If } \beta=\beta_{\max }=150 \\
& \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=(150)(10 \mu \mathrm{~A})=1.5 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \\
& \mathrm{~V}_{\mathrm{CEQ}}=10-(1.5 \mathrm{~mA})(5 \mathrm{k} \Omega)=2.5 \mathrm{~V}
\end{aligned}
$$

for
$50 \leq \beta \leq 150$
$\mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$ fixed
$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{C}} \leq 1.5 \mathrm{~mA}$
$7.5 \mathrm{~V} \geq \mathrm{V}_{\mathrm{CE}} \geq 2.5 \mathrm{~V}$
$\therefore \frac{\mathrm{I}_{\mathrm{C}(\max)}}{\mathrm{I}_{\mathrm{C}(\min)}}=\frac{1.5 \mathrm{~mA}}{0.5 \mathrm{~mA}}=3 \quad \begin{aligned} & \text { Not very } \\ & \text { stable }\end{aligned}$

Emitter-Stabilized Bias Circuit

Adding a resistor (R_{E}) to the emitter circuit stabilizes the bias circuit.

Base-Emitter Loop

From Kirchhoff's voltage law:

$$
+V_{C C}-l_{E} R_{E}-V_{B E}-l_{E} R_{E}=0
$$

Since $I_{E}=(\beta+1) I_{B}$:

$$
V_{C C}-I_{B} R_{B}-(\beta+1) I_{B} R_{E}=0
$$

Solving for I_{B} :

$$
I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}
$$

Collector-Emitter Loop

From Kirchhoff's voltage law:

$$
I_{E} R_{E}+V_{C E}+I_{C} R_{C}-V_{C C}=0
$$

Since $I_{E} \cong I_{C}$:

$$
V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

Also:

$$
\begin{aligned}
& V_{E}=I_{E} R_{E} \\
& V_{C}=V_{C E}+V_{E}=V_{C C}-I_{C} R_{C} \\
& V_{B}=V_{C C}-I_{R} R_{B}=V_{B E}+V_{E}
\end{aligned}
$$

