### Analog Electronics ENEE236

Instructor: Nasser Ismail

#### L8- DC Biasing - BJTs

# Example

- Assume VCE(sat)=0.2 V
- Find mode of operation of  $3k\Omega$ Q1?



# Determine Mode of Operation of BJT?

- Solution:
- 1) Since BE junction is forward biased ==> Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in Active Mode  $5 = 200 \text{ k}\Omega \cdot I_{\text{B}} + V_{\text{BE}} + 2 \text{ k}\Omega \cdot I_{\text{E}}$  $I_{E} = (1 + \beta)I_{R}$ But, Solve for I<sub>B</sub> =  $\frac{5 - V_{BE}}{200 \text{ k}\Omega + (1 + \beta).2 \text{ k}\Omega}$  $\frac{5 - 0.7}{200 \, \mathrm{k}\Omega + (1 + 100).\, 2 \, \mathrm{k}\Omega}$  $=\frac{4.3 \text{ V}}{402 \text{ k}\Omega}=10.7 \text{ }\mu\text{A}$



$$I_{C} = \beta I_{B}$$
  
= (100).(10.7 µA)  
= 1.07 mA  
$$I_{E} = (\beta + 1)I_{B}$$
  
= 1.0807 mA  
Now we find V<sub>CE</sub> from output circuit

$$10 - I_{C} .3 k\Omega - I_{E} .2 k\Omega = V_{CE}$$
$$\Rightarrow V_{CE} = 4.63 V > V_{CE(sat)}$$



∴ Q1 is in active mode and the assumption is true we can also verify that the BC junction is reverse biassed which is required so that the BJT operates in active mode





- Solution:
- 1) Since BE junction is forward biased ==> Q1 can be either in Active (Linear) or Saturation mode
   3kΩ
- Assume it is in saturation mode:

$$10 - I_{C(sat)} \cdot 3k\Omega - I_{E(sat)} \cdot 2k\Omega = V_{CE(Sat)}$$
  
assume  $I_{E(sat)} = I_{C(sat)}$   
$$\therefore I_{C(sat)} = \frac{10 - 0.2}{5k\Omega} = 1.96 \text{ mA}$$
  
 $B_{B(min)} = \frac{I_{C(sat)}}{\beta} = 19.6 \mu\text{A}$ 

Now we find the actual value of IB  $I_{B(actual)} = 10.7 \,\mu A$  (it was found previously) since

 $I_{B(actual)} < I_{B(sat)} \implies$  the assumption made earlier that BJT in saturation mode is wrong, and actually it is in active mode



# Biasing

**Biasing:** Applying DC voltages to a transistor in order to establish fixed level of voltage and current, for Amplifier mode, the resulting dc voltage and current establish the operation point to turn it on so that it can amplify AC signals.

### **Operating Point**

The DC input establishes an operating or *quiescent point* called the **Q-point**.



# **The Three Operating Regions**

#### **Active or Linear Region Operation**

- Base–Emitter junction is forward biased
- Base-Collector junction is reverse biased

#### **Cutoff Region Operation**

• Base–Emitter junction is reverse biased

#### **Saturation Region Operation**

- Base-Emitter junction is forward biased
- Base-Collector junction is forward biased

# **DC Biasing Circuits**

**Fixed-bias circuit** 

**Emitter-stabilized bias circuit** 

**Collector-emitter loop** 

Voltage divider bias circuit

**DC** bias with voltage feedback

### **1)Fixed Bias Configuration**



DC equivalent circuit Vcc  $f = 0 \Rightarrow Xc = \frac{1}{2\pi fC} \cong \infty$  (open circuit) Vcc  $R_C \ge$  $R_B$ ac output Csignal  $C_2$ + ac input o  $V_{CE}$ В signal  $C_1$ +  $V_{BE}$ E

### **The Base-Emitter Loop**

From Kirchhoff's voltage law for Input:

 $+V_{CC}-I_BR_B-V_{BE}=0$ 

Solving for base current:

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

Choosing RB will establish the required level of IB



### **Collector-Emitter Loop**

#### **Collector current:**

 $I_C = \beta I_B$ 

#### From Kirchhoff's voltage law:

$$V_{CE} = V_{CC} - I_C R_C$$
$$V_{CE} = V_C - V_E$$
Since  $V_E = 0$ 
$$\therefore V_{CE} = V_C$$
Also
$$V_{BE} = V_B -$$
$$\therefore V_{BE} = V_B$$





### **Saturation**

When the transistor is operating in **saturation**, current through the transistor is at its *maximum* possible value.

$$I_{Csat} = \frac{V_{CC}}{R_C}$$

 $V_{CE} \cong 0 V$ 

# **Load Line Analysis**





The Q-point is the operating point where the value of  $R_B$  sets the value of  $I_B$  that controls the values of  $V_{CE}$  and  $I_C$ .

#### Ch.4 Summary

# The Effect of $V_{CC}$ on the Q-Point



#### Ch.4 Summary

### The Effect of R<sub>c</sub> on the Q-Point



## The Effect of $I_B$ on the Q-Point



### **Design: Fixed bias**

Assume VCC = 10V,  $\beta_{nominal} = 100$ ,  $\beta_{min} = 50$ ,  $\beta_{max} = 150$ Design for Q - point :  $V_{CEQ} = 5V$ ,  $I_{CQ} = 1mA$ 

*Solution*  $I_{BQ} = \frac{I_{CQ}}{\beta_{\text{nominal}}} = \frac{1 \text{ mA}}{100} = 10 \text{ }\mu\text{A}$  $I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}} \Longrightarrow$  $R_{B} = \frac{V_{CC} - V_{BE}}{I_{B}} = \frac{10 - 0.7}{10 \,\mu A}$  $= 930 \,\mathrm{k}\Omega$  $V_{CE} = V_{CC} - I_C R_C$  $V_{CEO} = 5 = 10 - I_C R_C$ 

$$\therefore R_{\rm C} = \frac{5}{1\,{\rm mA}} = 5\,{\rm k}\Omega$$



### **Fixed bias Stability**

Assume VCC = 10V,  $\beta_{nominal} = 100$ ,  $\beta_{min} = 50$ ,  $\beta_{max} =$ Design for Q - point :  $V_{CEQ} = 5V$ ,  $I_{CQ} = 1mA$ 

#### Solution

If  $\beta = \beta_{\min} = 50$  $I_{\rm B} = 10 \,\mu A$  $I_{\rm C} = \beta I_{\rm B} = (50)(10 \,\mu {\rm A}) = 0.5 \,{\rm mA}$  $V_{CF} = V_{CC} - I_C R_C$  $V_{CEO} = 10 - (0.5 \text{ mA})(5 \text{ k}\Omega) = 7.5 \text{ V}$ If  $\beta = \beta_{max} = 150$  $I_{\rm B} = 10 \,\mu A$  $I_{C} = \beta I_{B} = (150)(10 \,\mu A) = 1.5 \,\text{mA}$  $V_{CE} = V_{CC} - I_C R_C$  $V_{CEO} = 10 - (1.5 \text{ mA})(5 \text{ k}\Omega) = 2.5 \text{ V}$ 



for  $50 \le \beta \le 150$   $I_B = 10 \,\mu A$  fixed  $0.5 \,mA \le I_C \le 1.5 \,mA$   $7.5 \,V \ge V_{CE} \ge 2.5 \,V$  $\therefore \frac{I_{C(max)}}{I_{C(min)}} = \frac{1.5 \,mA}{0.5 \,mA} = 3$  Not very stable

### **Emitter-Stabilized Bias Circuit**

Adding a resistor  $(R_E)$  to the emitter circuit stabilizes the bias circuit.



### **Base-Emitter Loop**

From Kirchhoff's voltage law:  $+V_{CC} - I_E R_E - V_{BE} - I_E R_E = 0$ Since  $I_E = (\beta + 1)I_B$ :  $V_{CC} - I_B R_B - (\beta + 1)I_B R_E = 0$ 

Solving for  $I_B$ :

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$



### **Collector-Emitter Loop**

From Kirchhoff's voltage law:  $I_E R_E + V_{CE} + I_C R_C - V_{CC} = 0$ Since  $I_E \cong I_C$ :  $V_{CE} = V_{CC} - I_C (R_C + R_E)$ 

Also:

$$V_E = I_E R_E$$
  

$$V_C = V_{CE} + V_E = V_{CC} - I_C R_C$$
  

$$V_B = V_{CC} - I_R R_B = V_{BE} + V_E$$

